Effects of Zinc Chelators on Aflatoxin Production in Aspergillus parasiticus

نویسندگان

  • Josephine Wee
  • Devin M. Day
  • John E. Linz
چکیده

Zinc concentrations strongly influence aflatoxin accumulation in laboratory media and in food and feed crops. The presence of zinc stimulates aflatoxin production, and the absence of zinc impedes toxin production. Initial studies that suggested a link between zinc and aflatoxin biosynthesis were presented in the 1970s. In the present study, we utilized two zinc chelators, N,N,N',N'-tetrakis (2-pyridylmethyl) ethane-1,2-diamine (TPEN) and 2,3-dimercapto-1-propanesulfonic acid (DMPS) to explore the effect of zinc limitation on aflatoxin synthesis in Aspergillus parasiticus. TPEN but not DMPS decreased aflatoxin biosynthesis up to six-fold depending on whether A. parasiticus was grown on rich or minimal medium. Although we observed significant inhibition of aflatoxin production by TPEN, no detectable changes were observed in expression levels of the aflatoxin pathway gene ver-1 and the zinc binuclear cluster transcription factor, AflR. Treatment of growing A. parasiticus solid culture with a fluorescent zinc probe demonstrated an increase in intracellular zinc levels assessed by increases in fluorescent intensity of cultures treated with TPEN compared to controls. These data suggest that TPEN binds to cytoplasmic zinc therefore limiting fungal access to zinc. To investigate the efficacy of TPEN on food and feed crops, we found that TPEN effectively decreases aflatoxin accumulation on peanut medium but not in a sunflower seeds-derived medium. From an application perspective, these data provide the basis for biological differences that exist in the efficacy of different zinc chelators in various food and feed crops frequently contaminated by aflatoxin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibitory Effects of Silver Nanoparticles on Growth and Aflatoxin B1 Production by Aspergillus Parasiticus

Background: Aflatoxins (AFs) are secondary hazardous fungal metabolites that are produced by strains of some Aspergillus species on food and feedstuffs. Aflatoxin B1 (AFB1) is one of the most important AF with high toxicity. Prevention of AF production and their elimination from food products is a matter of importance for many researchers in the last decades.Nanomaterials applications in medica...

متن کامل

Production of aflatoxin on soybeans.

Probable factors influencing resistance to aflatoxin synthesis in soybeans have been investigated by using cultures of Aspergillus parasiticus NRRL 3240. Soybeans contain a small amount of zinc (0.01 mug/g) bound to phytic acid. Autoclaving soybeans at 15 pounds (6803.88 g) for 15 min increases the aflatoxin production, probably by making zinc available. Addition of zinc to both autoclaved and ...

متن کامل

Comparative Study of the Major Iranian Cereal Cultivars and some Selected Spices in relation to Support Aspergillus parasiticus Growth and Aflatoxin Production

Background: Aflatoxins are toxic fungal metabolites enable to contaminate a wide range of natural substrates. This contamination can be host-specific for different plant species. In this study, the ability of a toxigenic Aspergillus parasiticus to produce various aflatoxins on major Iranian cereals was evaluated with special focus on plant susceptibility to toxin production at cultivar level. M...

متن کامل

Effects of thiamine on growth, aflatoxin production, and aflr gene expression in A. parasiticus

Background and Purpose: Mycotoxins are secondary fungal metabolites with a very high diversity that are produced by some species of Aspergillus which frequently leads to contaminate food and agricultural products. Recently, elimination of aflatoxin contamination in food and feed has been considered by scientists worldwide. Although, the antibacterial and antifungal effects of vitamins as natura...

متن کامل

Increased expression of Aspergillus parasiticus aflR, encoding a sequence-specific DNA-binding protein, relieves nitrate inhibition of aflatoxin biosynthesis.

The aflR gene from Aspergillus parasiticus and Aspergillus flavus may be involved in the regulation of aflatoxin biosynthesis. The aflR gene product, AFLR, possesses a GAL4-type binuclear zinc finger DNA-binding domain. A transformant, SU1-N3 (pHSP), containing an additional copy of aflR, showed increased transcription of aflR and the aflatoxin pathway structural genes, nor-1, ver-1, and omt-1,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016